Administrative Stuff

Homeworks:
- HW 1 - out of 95 points (I can't add...)
- Average was approx 59 (± late day grades)
- Grades will be scaled!! Do not worry about the numerical value!!

Notes from TAs:
- Please type homeworks if possible. If not, please write legibly.
- WHENEVER you are presenting an algorithm, the grading guidelines will be used. This includes:
 - Proof of correctness
 - Runtime analysis

Other stuff:
- Textbook on reserve at Oldegaard.
- Pair Programming
Algorithmic Paradigms

Greedy. Build up a solution incrementally, myopically optimizing some local criterion.

Dynamic programming. Break up a problem into a series of overlapping sub-problems, and build up solutions to larger and larger sub-problems.

Divide-and-conquer. Break up a problem into sub-problems, solve each sub-problem independently, and combine solution to sub-problems to form solution to original problem.

Dynamic Programming History

Bellman. [1950s] Pioneered the systematic study of dynamic programming.

Etymology.
- Dynamic programming = planning over time.

"It's impossible to use dynamic in a pejorative sense"

Dynamic Programming Applications

Areas.
- Bioinformatics.
- Control theory.
- Information theory.
- Operations research.

Some famous dynamic programming algorithms.
- Unix diff for comparing two files.
- Viterbi for hidden Markov models.
- Smith-Waterman for genetic sequence alignment.
- Bellman-Ford for shortest path routing in networks.
- Cocke-Kasami-Younger for parsing context-free grammars.

6.1 Weighted Interval Scheduling
Weighted Interval Scheduling

Weighted interval scheduling problem.
- Job j starts at s_j, finishes at f_j, and has weight or value v_j.
- Two jobs compatible if they don’t overlap.
- Goal: find maximum weight subset of mutually compatible jobs.

Unweighted Interval Scheduling Review

Recall. Greedy algorithm works if all weights are 1.
- Consider jobs in ascending order of finish time.
- Add job to subset if it is compatible with previously chosen jobs.

Observation. Greedy algorithm can fail spectacularly if arbitrary weights are allowed.
Weighted Interval Scheduling

Notation. Label jobs by finishing time: \(f_1 \leq f_2 \leq \ldots \leq f_n \).
Def. \(p(j) \) = largest index \(i < j \) such that job \(i \) is compatible with \(j \).

Ex: \(p(8) = 5, p(7) = 3, p(2) = 0 \).

Dynamic Programming: Binary Choice

Notation. \(\text{OPT}(j) = \text{value of optimal solution to the problem consisting of job requests 1, 2, ..., j} \).

- **Case 1:** \(\text{OPT} \) does not select job \(j \).
 - must include optimal solution to problem consisting of remaining compatible jobs 1, 2, ..., \(j-1 \)

- **Case 2:** \(\text{OPT} \) selects job \(j \).
 - collect profit \(v_j \)
 - can’t use incompatible jobs \{ \(p(j) + 1, p(j) + 2, ..., j - 1 \} \)
 - must include optimal solution to problem consisting of remaining compatible jobs 1, 2, ..., \(p(j) \)

\[
\text{OPT}(j) = \begin{cases}
0 & \text{ if } j = 0 \\
\max \{ v_j + \text{OPT}(p(j)), \text{OPT}(j-1) \} & \text{ otherwise}
\end{cases}
\]
Weighted Interval Scheduling: Recursive Algorithm

Input: \(n, s_1, \ldots, s_n, f_1, \ldots, f_n, v_1, \ldots, v_n \)

Sort jobs by finish times so that \(f_1 \leq f_2 \leq \ldots \leq f_n \)

Compute \(p(1), p(2), \ldots, p(n) \)

Compute-Opt(j) {
 if \((j = 0) \)
 return 0
 else
 return max(\(v_j + \text{Compute-Opt}(p(j)) \), \(\text{Compute-Opt}(j-1) \))
}

Ex. Number of recursive calls for family of "layered" instances grows like Fibonacci sequence.

Observation. Recursive algorithm is exponential. (No better than brute force!)
Weighted Interval Scheduling: Memoization

Memoization. Store results of each sub-problem in a cache; lookup as needed.

Input: \(n, s_1, \ldots, s_n, f_1, \ldots, f_n, v_1, \ldots, v_n \)

Sort jobs by finish times so that \(f_1 \leq f_2 \leq \ldots \leq f_n \).

Compute \(p(1), p(2), \ldots, p(n) \)

for \(j = 1 \) to \(n \)
 \(M[j] = \) empty
 \(M[0] = 0 \)

\[M\text{-Compute-Opt}(j) \{ \]
 \(\text{if} \) \(M[j] \text{ is empty} \)
 \(M[j] = \max(v_j + M\text{-Compute-Opt}(p(j)), \]
 \(M\text{-Compute-Opt}(j-1)) \)
 \(\text{return} \ M[j] \)
\[\}

Weighted Interval Scheduling: Running Time

Claim. Memoized version of algorithm takes \(O(n \log n) \) time.

- Sort by finish time: \(O(n \log n) \).
- Computing \(p(\cdot) \): \(O(n \log n) \) via sorting by start time.

- \(M\text{-Compute-Opt}(j) \): each invocation takes \(O(1) \) time and either
 - (i) returns an existing value \(M[j] \)
 - (ii) fills in one new entry \(M[j] \) and makes two recursive calls

- Progress measure \(\Phi = \# \) nonempty entries of \(M[\cdot] \).
 - initially \(\Phi = 0 \), throughout \(\Phi \leq n \).
 - (ii) increases \(\Phi \) by 1 \(\implies \) at most \(2n \) recursive calls.

- Overall running time of \(M\text{-Compute-Opt}(n) \) is \(O(n) \).
Weighted Interval Scheduling: Bottom-Up

Bottom-up dynamic programming. Unwind recursion.

Input: $n, s_1, \ldots, s_n, f_1, \ldots, f_n, v_1, \ldots, v_n$

Sort jobs by finish times so that $f_1 \leq f_2 \leq \ldots \leq f_n$

Compute $p(1), p(2), \ldots, p(n)$

Iterative-Compute-Opt {
 $M[0] = 0$
 for $j = 1$ to n
 $M[j] = \max(v_j + M[p(j)], M[j-1])$
}

We will always use bottom-up dynamic programming
- Easier to analyze runtime
- Easier to prove correctness (strong induction!)

Weighted Interval Scheduling: Finding a Solution

Q. Dynamic programming algorithms computes optimal value. What if we want the solution itself?

A. Do some post-processing.

Run M-Compute-Opt(n) or Iterative-Compute-Opt(n)

Run Find-Solution(n)

Find-Solution(j) {
 if ($j = 0$)
 output nothing
 else if ($v_j + M[p(j)] > M[j-1]$)
 print j
 Find-Solution($p(j)$)
 else
 Find-Solution($j-1$)
}

- # of recursive calls $\leq n \Rightarrow O(n)$.

Weighted Interval Scheduling: Finding a Solution

A. Build it into your program.

Input: n, s_1, ..., s_n, f_1, ..., f_n, v_1, ..., v_n

Sort jobs by finish times so that f_1 ≤ f_2 ≤ ... ≤ f_n

Compute p(1), p(2), ..., p(n)

Iterative-Compute-Opt2 {
 M[0] = 0
 for j = 1 to n
 if (v_j + M[p(j)]) > M[j-1])
 M[j] = v_j + M[p(j)]
 Opt-Traceback[j] = p(j)
 else
 M[j] = M[j-1]
 Opt-Traceback[j] = j-1
 }
}

A. Must still do some post-processing.

Run Iterative-Compute-Opt2(n)
Run Find-Solution(n)

Find-Solution(j) {
 if (j = 0)
 output nothing
 else if (M[j] ≠ M[Opt-Traceback(j)])
 print j
 Find-Solution(Opt-Traceback(j))
 }

- # of recursive calls ≤ n ⇒ O(n).
- This method often much cleaner.
Dynamic Programming Template

We use dynamic programming when:
- The overall solution can be easily (and quickly) computed from subproblems.
- There are a polynomial number of subproblems.
- There is a natural ordering (e.g. “smallest” to “largest”) of subproblems.

Key Design Problem: “chicken-and-egg” issue
- finding useful subproblems
- finding a recurrence that connects them

6.3 Segmented Least Squares
Segmented Least Squares

Least squares.
- Foundational problem in statistic and numerical analysis.
- Given n points in the plane: $(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)$.
- Find a line $y = ax + b$ that minimizes the sum of the squared error:

$$SSE = \sum_{i=1}^{n} (y_i - ax_i - b)^2$$

Solution. Calculus \Rightarrow min error is achieved when

$$a = \frac{n \sum_i x_i y_i - (\sum_i x_i)(\sum_i y_i)}{n \sum_i x_i^2 - (\sum_i x_i)^2}, \quad b = \frac{\sum_i y_i - a \sum_i x_i}{n}$$

Segmented Least Squares

Segmented least squares.
- Points lie roughly on a sequence of several line segments.
- Given n points in the plane $(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)$ with $x_1 < x_2 < \ldots < x_n$, find a sequence of lines that minimizes \ldots.

Q. What's a reasonable balance of accuracy and parsimony?
Segmented Least Squares

Segmented least squares.
- Points lie roughly on a sequence of several line segments.
- Given n points in the plane $(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)$ with
 - $x_1 < x_2 < \ldots < x_n$, find a sequence of lines that minimizes:
 - the sum of the sums of the squared errors E in each segment
 - the number of lines L
- Tradeoff function: $E + cL$, for some constant $c > 0$.

Dynamic Programming: Multiway Choice

Notation.
- $OPT(j) = \text{minimum cost for points } p_1, p_{i+1}, \ldots, p_j$
- $e(i, j) = \text{minimum sum of squares for points } p_i, p_{i+1}, \ldots, p_j$

To compute $OPT(j)$:
- Last segment uses points $p_i, p_{i+1}, \ldots, p_j$ for some i.
- Cost = $e(i, j) + c + OPT(i-1)$.

\[
OPT(j) = \begin{cases}
0 & \text{if } j = 0 \\
\min_{i, s \leq j} \left\{ e(i, j) + c + OPT(i-1) \right\} & \text{otherwise}
\end{cases}
\]
Segmented Least Squares: Algorithm

INPUT: \(n, p_1, \ldots, p_n, c \)

Segmented-Least-Squares()

```plaintext
M[0] = 0
for j = 1 to n
    M[j] = \min_{i \leq i \leq j} (e(i,j) + c + M[i-1])
return M[n]
```

Running time. \(O(n^3) \). Can be improved to \(O(n^2) \) by pre-computing various statistics.

- Bottleneck = computing \(e(i,j) \) for \(O(n^2) \) pairs, \(O(n) \) per pair using previous formula.
6.5 RNA Secondary Structure

RNA. String $B = b_1b_2...b_n$ over alphabet { A, C, G, U }.

Secondary structure. RNA is single-stranded so it tends to loop back and form base pairs with itself. This structure is essential for understanding behavior of molecule.

Ex: GUCGUUGAGCGAUGUAAACGGUCCUACGGCGAGA

complementary base pairs: A-U, C-G
RNA Secondary Structure

Secondary structure. A set of pairs $S = \{ (b_i, b_j) \}$ that satisfy:

- [Watson-Crick.] S is a matching and each pair in S is a Watson-Crick complement: A-U, U-A, C-G, or G-C.
- [No sharp turns.] The ends of each pair are separated by at least 4 intervening bases. If $(b_i, b_j) \in S$, then $i < j - 4$.
- [Non-crossing.] If (b_i, b_j) and (b_k, b_l) are two pairs in S, then we cannot have $i < k < j < l$.

Free energy. Usual hypothesis is that an RNA molecule will form the secondary structure with the optimum total free energy.

approximate by number of base pairs

Goal. Given an RNA molecule $B = b_1 b_2 \ldots b_n$, find a secondary structure S that maximizes the number of base pairs.

RNA Secondary Structure: Examples

Examples.

```
Example 1

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>G</td>
<td>G</td>
</tr>
<tr>
<td>C</td>
<td>U</td>
</tr>
<tr>
<td>A</td>
<td>U</td>
</tr>
<tr>
<td>U</td>
<td>A</td>
</tr>
</tbody>
</table>

(base pair)
```

```
Example 2

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>G</td>
<td>G</td>
</tr>
<tr>
<td>C</td>
<td>U</td>
</tr>
<tr>
<td>A</td>
<td>U</td>
</tr>
<tr>
<td>U</td>
<td>A</td>
</tr>
</tbody>
</table>

```

```
Example 3

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>G</td>
<td>G</td>
</tr>
<tr>
<td>C</td>
<td>U</td>
</tr>
<tr>
<td>A</td>
<td>G</td>
</tr>
<tr>
<td>U</td>
<td>G</td>
</tr>
</tbody>
</table>

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>G</td>
<td>G</td>
</tr>
<tr>
<td>C</td>
<td>U</td>
</tr>
<tr>
<td>A</td>
<td>G</td>
</tr>
<tr>
<td>U</td>
<td>G</td>
</tr>
</tbody>
</table>
```

ok

```
Example 4

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>U</td>
</tr>
<tr>
<td>U</td>
<td>G</td>
</tr>
<tr>
<td>G</td>
<td>G</td>
</tr>
<tr>
<td>C</td>
<td>A</td>
</tr>
<tr>
<td>U</td>
<td></td>
</tr>
</tbody>
</table>

```

sharp turn

```
Example 5

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>U</td>
</tr>
<tr>
<td>U</td>
<td>G</td>
</tr>
<tr>
<td>G</td>
<td>G</td>
</tr>
<tr>
<td>C</td>
<td>A</td>
</tr>
<tr>
<td>U</td>
<td></td>
</tr>
</tbody>
</table>

```

crossing
RNA Secondary Structure: Subproblems

First attempt. $\text{OPT}(j) =$ maximum number of base pairs in a secondary structure of the substring $b_1b_2...b_j$.

Difficulty. Results in two sub-problems.
- Finding secondary structure in: $b_1b_2...b_{t-1}$.
- Finding secondary structure in: $b_{t+1}b_{t+2}...b_{n-1}$.

Dynamic Programming Over Intervals

Notation. $\text{OPT}(i, j) =$ maximum number of base pairs in a secondary structure of the substring $b_ib_{i+1}...b_j$.

- Case 1. If $i \geq j - 4$.
 - $\text{OPT}(i, j) = 0$ by no-sharp turns condition.

- Case 2. Base b_j is not involved in a pair.
 - $\text{OPT}(i, j) = \text{OPT}(i, j-1)$

- Case 3. Base b_j pairs with b_t for some $i \leq t < j - 4$.
 - non-crossing constraint decouples resulting sub-problems
 - $\text{OPT}(i, j) = 1 + \max_t \{ \text{OPT}(i, t-1) + \text{OPT}(t+1, j-1) \}$

 take max over t such that $i \leq t < j-4$ and b_t and b_j are Watson-Crick complements
Bottom Up Dynamic Programming Over Intervals

Q. What order to solve the sub-problems?

A. Do shortest intervals first.

```java
RNA(b_1, ..., b_n) {
    for k = 1, 2, ..., n-1
        for i = 1, 2, ..., n-k
            j = i + k
            Compute M[i, j]
    return M[1, n]
}
```

Bottom Up Dynamic Programming Over Intervals

Q. What order to solve the sub-problems?

A. Do shortest intervals first.

```java
RNA(b_1, ..., b_n) {
    for k = 5, 6, ..., n-1
        for i = 1, 2, ..., n-k
            j = i + k
            Compute M[i, j]
    return M[1, n]
}
```
Bottom Up Dynamic Programming Over Intervals

Q. What order to solve the sub-problems?
A. Do shortest intervals first.

```latex
RNA(b_1,...,b_n) \{ 
  \text{for } k = 5, 6, \ldots, n-1 
  \text{for } i = 1, 2, \ldots, n-k 
  \quad j = i + k 
  \quad M[i, j] = \max\{ \text{OPT}(i, j-1), 
                    1 + \max_t \{ \text{OPT}(i, t-1) + \text{OPT}(t+1, j-1) \} \} 
\}
```

Running time. $O(n^3)$.

RNA Secondary Structure: Finding a Solution

A. Must still do some post-processing.

```latex
\text{Run Iterative-Compute-Opt2(n)} 
\text{Run Find-Solution(n)}

\text{Find-Solution(j) \{ 
  \text{if } (j = 0) 
  \quad \text{output nothing} 
  \text{else if } (M[j] \neq M[\text{Opt-Traceback(j)}]) 
  \quad \text{print } j 
  \quad \text{Find-Solution(\text{Opt-Traceback(j)})} 
\}}
```

- # of recursive calls $\leq n \Rightarrow O(n)$.
- This method often much cleaner.
More Complex RNA Structure

6.4 Knapsack Problem
Knapsack Problem

Knapsack problem.
- Given \(n \) objects and a "knapsack."
- Item \(i \) weighs \(w_i > 0 \) kilograms and has value \(v_i > 0 \).
- Knapsack has capacity of \(W \) kilograms.
- Goal: fill knapsack so as to maximize total value.

Ex: \{ 3, 4 \} has value 40.

<table>
<thead>
<tr>
<th>#</th>
<th>value</th>
<th>weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>18</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>22</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>28</td>
<td>7</td>
</tr>
</tbody>
</table>

W = 11

Greedy: repeatedly add item with maximum ratio \(v_i / w_i \).
Ex: \{ 5, 2, 1 \} achieves only value = 35 \(\Rightarrow \) greedy not optimal.

Dynamic Programming: False Start

Def. \(OPT(i) = \) max profit subset of items 1, ..., i.

- Case 1: \(OPT \) does not select item i.
 - \(OPT \) selects best of \{ 1, 2, ..., i-1 \}

- Case 2: \(OPT \) selects item i.
 - accepting item i does not immediately imply that we will have to reject other items
 - without knowing what other items were selected before i, we don't even know if we have enough room for i

Conclusion. Need more sub-problems!
Dynamic Programming: Adding a New Variable

Def. $OPT(i, w) =$ max profit subset of items $1, \ldots, i$ with weight limit w.

- **Case 1**: OPT does not select item i.
 - OPT selects best of $\{1, 2, \ldots, i-1\}$ using weight limit w

- **Case 2**: OPT selects item i.
 - new weight limit = $w - w_i$
 - OPT selects best of $\{1, 2, \ldots, i-1\}$ using this new weight limit

$$OPT(i, w) = \begin{cases} 0 & \text{if } i = 0 \\ OPT(i-1, w) & \text{if } w_i > w \\ \max\{OPT(i-1, w), v_i + OPT(i-1, w-w_i)\} & \text{otherwise} \end{cases}$$

Knapsack Problem: Bottom-Up

Knapsack. Fill up an n-by-W array.

Input: $n, W, w_1, \ldots, w_n, v_1, \ldots, v_n$

for $w = 0$ to W
 M[0, w] = 0

for $i = 1$ to n
 for $w = 1$ to W
 if ($w_i > w$)
 M[i, w] = **M**[$i-1$, w]
 else
 M[i, w] = max ($M[i-1, w], v_i + M[i-1, w-w_i]$)

return **M**[n, W]
Knapsack Algorithm

Knapsack Problem: Running Time

Running time. $\Theta(nW)$.
- Not polynomial in input size!
- "Pseudo-polynomial."
- Decision version of Knapsack is NP-complete. [Chapter 8]

Knapsack approximation algorithm. There exists a poly-time algorithm that produces a feasible solution that has value within 0.01% of optimum. [Section 11.8]
Dynamic Programming Summary

Recipe.
- Characterize structure of problem.
- Recursively define value of optimal solution.
- Compute value of optimal solution.
- Construct optimal solution from computed information.

Dynamic programming techniques.
- Binary choice: weighted interval scheduling.
- Multi-way choice: segmented least squares.
- Dynamic programming over intervals: RNA secondary structure.
- Adding a new variable: knapsack.

Top-down vs. bottom-up: different people have different intuitions.