Polynomial-Time Reduction

Reduction. Problem X polynomial reduces to problem Y if arbitrary instances of problem X can be solved using:
- Polynomial number of standard computational steps, plus
- Polynomial number (usually one!) call to oracle that solves problem Y.

Notation. $X \leq_p Y$.

Usually:
- Transform X instance into Y instance (in poly-time).
- Solve Y instance using oracle.
- Show that the oracle gives the answer to your X instance!
 i.e. "yes" for Y implies "yes" for X,
 and "yes" for X implies "yes" for Y (equiv to "no" Y implies "no" X).
NP-Complete

NP-complete. A problem such that

- $\exists Y \in \text{NP}$
- for every problem X in NP, $X \leq_p Y$.

Theorem. Suppose Y is an NP-complete problem. Then Y is solvable in poly-time iff $P = \text{NP}$.

Remark. The condition that $Y \in \text{NP}$ is important.

Establishing NP-Completeness

Recipe to establish NP-completeness of problem Y.

- Step 1. Show that Y is in NP.
- Step 2. Choose an NP-complete problem X, and prove that $X \leq_p Y$.

Justification. If X is an NP-complete problem, and Y is a problem in NP with the property that $X \leq_p Y$ then Y is NP-complete.
We will show: All problems below are NP-complete and polynomial reduce to one another!

Some NP-Complete Problems

Six basic genres of NP-complete problems and paradigmatic examples.
- Packing problems: SET-PACKING, INDEPENDENT SET.
- Covering problems: SET-COVER, VERTEX-COVER.
- Constraint satisfaction problems: SAT, 3-SAT.
- Sequencing problems: HAMILTONIAN-CYCLE, TSP.
- Partitioning problems: 3D-MATCHING, 3-COLOR.
- Numerical problems: SUBSET-SUM, KNAPSACK.

Practice. Most NP problems are either known to be in P or NP-complete.

Notable exceptions. Factoring, graph isomorphism, Nash equilibrium.
8.5 Sequencing Problems

Basic genres.
- Constraint satisfaction problems: SAT, 3-SAT.
- Packing problems: SET-PACKING, INDEPENDENT SET.
- Covering problems: SET-COVER, VERTEX-COVER.
- Sequencing problems: HAMILTONIAN-CYCLE, TSP.
- Partitioning problems: 3D-MATCHING, 3-COLOR.
- Numerical problems: SUBSET-SUM, KNAPSACK.
Hamiltonian Cycle

HAM-CYCLE: given an undirected graph $G = (V, E)$, does there exist a simple cycle Γ that contains every node in V.

YES: vertices and faces of a dodecahedron.

NO: bipartite graph with odd number of nodes.
Claim. DIR-HAM-CYCLE ≤ₚ HAM-CYCLE.

Pf. Given a directed graph $G = (V, E)$, construct an undirected graph G' with $3n$ nodes.

Claim. G has a Hamiltonian cycle iff G' does.

Pf. \implies

- Suppose G has a directed Hamiltonian cycle Γ.
- Then G' has an undirected Hamiltonian cycle (same order).

Pf. \impliedby

- Suppose G' has an undirected Hamiltonian cycle Γ'.
- Γ' must visit nodes in G' using one of following two orders:
 - \ldots, B, G, R, B, G, R, B, G, R, B, \ldots
- Blue nodes in Γ' make up directed Hamiltonian cycle Γ in G, or reverse of one. •
3-SAT Reduces to Directed Hamiltonian Cycle

HAM-CYCLE and DIR-HAM-CYCLE are in NP.

Claim. \(3\text{-SAT} \leq_p \text{DIR-HAM-CYCLE} \) (hence DIR-HAM-CYCLE and HAM-CYCLE are NP-Complete).

Pf. Given an instance \(\Phi\) of 3-SAT, we construct an instance of DIR-HAM-CYCLE that has a Hamiltonian cycle iff \(\Phi\) is satisfiable.

Construction. First, create a graph that has \(2^n\) Hamiltonian cycles which correspond in a natural way to \(2^n\) possible truth assignments.
3-SAT Reduces to Directed Hamiltonian Cycle

Construction. Given 3-SAT instance Φ with n variables x_i and k clauses.

- Construct G to have 2^n Hamiltonian cycles.
- Intuition: traverse path i from left to right \iff set variable $x_i = 1$.

3-SAT Reduces to Directed Hamiltonian Cycle

Construction. Given 3-SAT instance Φ with n variables x_i and k clauses.

- For each clause: add a node and 6 edges.
3-SAT Reduces to Directed Hamiltonian Cycle

Claim. \(\Phi \) is satisfiable iff \(G \) has a Hamiltonian cycle.

Pf. \(\Rightarrow \)
- Suppose 3-SAT instance has satisfying assignment \(x^* \).
- Then, define Hamiltonian cycle in \(G \) as follows:
 - if \(x^*_i = 1 \), traverse row \(i \) from left to right
 - if \(x^*_i = 0 \), traverse row \(i \) from right to left
 - for each clause \(C_j \), there will be at least one row \(i \) in which we are going in "correct" direction to splice node \(C_j \) into tour

Pf. \(\Leftarrow \)
- Suppose \(G \) has a Hamiltonian cycle \(\Gamma \).
- If \(\Gamma \) enters clause node \(C_j \), it must depart on mate edge.
 - thus, nodes immediately before and after \(C_j \) are connected by an edge \(e \) in \(G \)
 - removing \(C_j \) from cycle, and replacing it with edge \(e \) yields Hamiltonian cycle on \(G - \{ C_j \} \)
- Continuing in this way, we are left with Hamiltonian cycle \(\Gamma' \) in \(G - \{ C_1, C_2, \ldots, C_k \} \).
- Set \(x^*_i = 1 \) iff \(\Gamma' \) traverses row \(i \) left to right.
- Since \(\Gamma' \) visits each clause node \(C_j \), at least one of the paths is traversed in "correct" direction, and each clause is satisfied. \(\blacksquare \)
Chapter 8

NP and Computational Intractability

Traveling Salesperson Problem

TSP. Given a set of n cities and a pairwise distance function $d(u, v)$, is there a tour of length $\leq D$?

All 13,509 cities in US with a population of at least 500
Reference: http://www.tsp.gatech.edu
Traveling Salesperson Problem

TSP. Given a set of n cities and a pairwise distance function $d(u, v)$, is there a tour of length $\leq D$?

Reference: http://www.tsp.gatech.edu

11,849 holes to drill in a programmed logic array
Reference: http://www.tsp.gatech.edu
Traveling Salesperson Problem

TSP. Given a set of \(n \) cities and a pairwise distance function \(d(u, v) \), is there a tour of length \(\leq D \)?

HAM-CYCLE: given a graph \(G = (V, E) \), does there exists a simple cycle that contains every node in \(V \)?

Claim. \(\text{HAM-CYCLE} \leq_p \text{TSP} \).

Pf.
- Given instance \(G = (V, E) \) of \(\text{HAM-CYCLE} \), create \(n \) cities with distance function
 \[
 d(u, v) = \begin{cases}
 1 & \text{if } (u, v) \in E \\
 2 & \text{if } (u, v) \notin E
 \end{cases}
 \]
- TSP instance has tour of length \(\leq n \) iff \(G \) is Hamiltonian.

Is TSP NP-Complete?
In-Class Exercise

Determine whether the following statements are T/F:

- Problems in NP cannot be solved in polynomial time.

- If X is in NP, Y is NP-Complete and $X \leq_p Y$, then X is NP-Complete.

- The decision version of the sequence alignment problem (i.e. is there an alignment with score < a?) is in NP.

- An NP-Complete problem cannot be solved in polynomial-time.

- Even if $P \neq NP$, there may still be some NP-complete problems that can be solved in polynomial time.

- Recall that SAT is in NP. Thus, there exists a polynomial certifier and certificate that proves a CNF formula X is not satisfiable.
8.6-7 Graph Coloring

Basic genres:
- Packing problems: SET-PACKING, INDEPENDENT SET.
- Covering problems: SET-COVER, VERTEX-COVER.
- Constraint satisfaction problems: SAT, 3-SAT.
- Sequencing problems: HAMILTONIAN-CYCLE, TSP.
- Partitioning problems: 3D-MATCHING, 3-COLOR.
- Numerical problems: SUBSET-SUM, KNAPSACK.
3-Colorability

3-COLOR: Given an undirected graph G does there exists a way to color the nodes red, green, and blue so that no adjacent nodes have the same color?

![Graph with 3-coloring]

Register Allocation

Register allocation. Assign program variables to machine register so that no more than k registers are used and no two program variables that are needed at the same time are assigned to the same register.

Interference graph. Nodes are program variables names, edge between u and v if there exists an operation where both u and v are "live" at the same time.

Observation. [Chaitin 1982] Can solve register allocation problem iff interference graph is k-colorable.

Fact. $3\text{-COLOR} \leq_P k\text{-REGISTER-ALLOCATION}$ for any constant $k \geq 3.$
3-Colorability

3-COLOR is in NP.

Claim. 3-SAT \leq_p 3-COLOR (and hence 3-COLOR is NP-Complete).

Pf. Given 3-SAT instance \(\Phi \), we construct an instance of 3-COLOR that is 3-colorable iff \(\Phi \) is satisfiable.

Construction.
i. Make a node for each literal and its negation, and connect the two.
ii. Create 3 new nodes T, F, B: connect them in a triangle, and connect each literal to B.
iii. For each clause, add gadget of 6 nodes and 13 edges.

Claim. Graph is 3-colorable iff \(\Phi \) is satisfiable.

Pf. \(\Rightarrow \) Suppose graph is 3-colorable.

- Consider assignment that sets all T literals to true.
- (i) ensures a literal and its negation are not the same.
- (ii) ensures each literal is T or F.
- (iii) ...
3-Colorability

Claim. Graph is 3-colorable iff Φ is satisfiable.

Pf. \Rightarrow Suppose graph is 3-colorable.

- Consider assignment that sets all T literals to true.
- (i) ensures a literal and its negation are not the same.
- (ii) ensures each literal is T or F.
- (iii) ensures at least one literal in each clause is T.

$$C_i = x_1 \lor \overline{x_2} \lor x_3$$
3-Colorability

Claim. Graph is 3-colorable iff Φ is satisfiable.

Pf. \Leftarrow Suppose 3-SAT formula Φ is satisfiable.

- Color all true literals T.
- Color node below green node F, and node below that B.
- Color remaining middle row nodes B.
- Color remaining bottom nodes T or F as forced.

\[C_i = x_1 \lor \overline{x_2} \lor x_3 \]

true T

false F

 literal set to true in 3-SAT as

Chapter 8

NP and Computational Intractability

Slides by Kevin Wayne.
Copyright © 2005 Pearson-Addison Wesley.
All rights reserved.
8.8 Numerical Problems

Basic genres.
- Packing problems: SET-PACKING, INDEPENDENT SET.
- Covering problems: SET-COVER, VERTEX-COVER.
- Constraint satisfaction problems: SAT, 3-SAT.
- Sequencing problems: HAMILTONIAN-CYCLE, TSP.
- Partitioning problems: 3-COLOR, 3D-MATCHING.
- Numerical problems: SUBSET-SUM, KNAPSACK.

Subset Sum

SUBSET-SUM. Given natural numbers \(w_1, \ldots, w_n \) and an integer \(W \), is there a subset that adds up to exactly \(W \)?

Ex: \(\{ 1, 4, 16, 64, 256, 1040, 1041, 1093, 1284, 1344 \} \), \(W = 3754 \).

Yes. \(1 + 16 + 64 + 256 + 1040 + 1093 + 1284 = 3754 \).

SUBSET-SUM (and KNAPSACK) are in NP.

Claim. \(3\text{-SAT} \leq P \text{ SUBSET-SUM} \) (and hence SUBSET-SUM and KNAPSACK are NP-Complete).

Pf. Given an instance \(\Phi \) of 3-SAT, we construct an instance of SUBSET-SUM that has solution iff \(\Phi \) is satisfiable.
Subset Sum

Construction. Given 3-SAT instance \(\Phi \) with \(n \) variables and \(k \) clauses, form \(2n + 2k \) decimal integers, each of \(n+k \) digits, as illustrated below.

Claim. \(\Phi \) is satisfiable iff there exists a subset that sums to \(W \).

Pf. No carries possible.

\[
\begin{array}{c|c|c|c|c|c}
\text{C}_1 & \text{C}_2 & \text{C}_3 & x & y & z \\
\hline
100 & 0,10 & 0 & 1 & 0 & 1 & 0 & 10,010 \\
10 & 10 & 1 & 0 & 1 & 1 & 0,101 \\
10 & 10 & 0 & 1 & 1 & 1 & 10,011 \\
1,110 & 1 & 1 & 1 & 0 & 1 & 1,110 \\
1,001 & 1 & 0 & 1 & 0 & 0 & 1,001 \\
100 & 1 & 0 & 0 & 1 & 0 & 0,001 \\
200 & 0 & 0 & 2 & 0 & 0 & 200 \\
10 & 0 & 0 & 0 & 1 & 0 & 0,010 \\
20 & 0 & 0 & 0 & 2 & 0 & 0,020 \\
1 & 0 & 0 & 0 & 0 & 1 & 0,011 \\
2 & 0 & 0 & 0 & 0 & 2 & 0,021 \\
111,444 & 1 & 1 & 1 & 4 & 4 & 111,444
\end{array}
\]

- Dummies to get clause columns to sum to 4.
- Wolfram.com 387.html

My Hobby:

Embedding NP-complete problems in restaurant orders

- **Appetizers**
 - Mixed Fruit: 2.15
 - French Fries: 2.75
 - Side Salad: 3.35
 - Hot Wings: 3.55
 - Mozzarella Sticks: 4.20
 - Sampler Plate: 5.80

- **Sandwiches**
 - Barbeque: 6.50

- **EXACTLY?** Um...

- **Might help you out?**

- **Listen, I have six other tables to get to.**

- **As fast as possible.**